Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.19.23287456

ABSTRACT

Importance: Pregnant women are at increased risk of severe COVID-19, but the contribution of viral RNA load, the presence of infectious virus, and mucosal antibody responses remain understudied. Objective: To evaluate the association of COVID-19 outcomes following confirmed infection with vaccination status, mucosal antibody responses, infectious virus recovery and viral RNA levels in pregnant compared with non-pregnant women. Design: A retrospective observational cohort study of remnant clinical specimens from SARS-CoV-2 infected patients between October 2020-May 2022. Setting: Five acute care hospitals within the Johns Hopkins Health System (JHHS) in the Baltimore, MD-Washington, DC area. Participants: Participants included confirmed SARS-CoV-2 infected pregnant women and matched non-pregnant women (matching criteria included age, race/ethnicity, and vaccination status). Exposure: SARS-CoV-2 infection, with documentation of SARS-CoV-2 mRNA vaccination. Main Outcome(s): The primary dependent measures were clinical COVID-19 outcomes, infectious virus recovery, viral RNA levels, and mucosal anti-spike (S) IgG titers from upper respiratory tract samples. Clinical outcomes were compared using odds ratios (OR), and measures of virus and antibody were compared using either Fisher's exact test, two-way ANOVA, or regression analyses. Results were stratified according to pregnancy, vaccination status, maternal age, trimester of pregnancy, and infecting SARS-CoV-2 variant. Results(s): A total of 452 individuals (117 pregnant and 335 non-pregnant) were included in the study, with both vaccinated and unvaccinated individuals represented. Pregnant women were at increased risk of hospitalization (OR = 4.2; CI = 2.0-8.6), ICU admittance, (OR = 4.5; CI = 1.2-14.2), and of being placed on supplemental oxygen therapy (OR = 3.1; CI =1.3-6.9). An age-associated decrease in anti-S IgG titer and corresponding increase in viral RNA levels (P< 0.001) was observed in vaccinated pregnant, but not non-pregnant, women. Individuals in their 3rd trimester had higher anti-S IgG titers and lower viral RNA levels (P< 0.05) than those in their 1st or 2nd trimesters. Pregnant individuals experiencing breakthrough infections due to the omicron variant had reduced anti-S IgG compared to non-pregnant women (P< 0.05). Conclusions and Relevance: In this cohort study, vaccination status, maternal age, trimester of pregnancy, and infecting SARS-CoV-2 variant were each identified as drivers of differences in mucosal anti-S IgG responses in pregnant compared with non-pregnant women. Observed increased severity of COVID-19 and reduced mucosal antibody responses particularly among pregnant participants infected with the Omicron variant suggest that maintaining high levels of SARS-CoV-2 immunity may be important for protection of this at-risk population.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain , COVID-19 , Neural Tube Defects
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.17.22275210

ABSTRACT

Increased reinfection rates with SARS-CoV-2 have recently been reported, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. We investigated sequencing and clinical data on the 750 patients (920 samples) we identified with these criteria. The median time between tests was 377 days, and 724 (79%) of the post 90-day positives were collected after the emergence of the Omicron variant in November 2021. Successful sequencing occurred in 127 of 231 attempted samples, spiked during the Omicron surge and showed higher median days from initial infection compared to failed sequences (median 398 days compared to 276 days, p<0.0005). A total of 122 (98%) patients showed evidence of reinfection, 45 of which had sequence proven reinfection and 77 had inferred reinfections (later sequence showed a clade that was not circulating when the patient was initially infected). Children accounted for only 4% of reinfections. 43 (96%) of 45 infections with sequence proven reinfection were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%), were vaccinated prior to the second infection, and 6 (13%) were Immunosuppressed. Only 2 (4%) were hospitalized, and both had underlying conditions.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.02.22270337

ABSTRACT

Background: Prior observation has shown differences in COVID-19 hospitalization rates between SARS-CoV-2 variants, but limited information describes differences in hospitalization outcomes. Methods: Patients admitted to 5 hospitals with COVID-19 were included if they had hypoxia, tachypnea, tachycardia, or fever, and data to describe SARS-CoV-2 variant, either from whole genome sequencing, or inference when local surveillance showed [≥]95% dominance of a single variant. The average effect of SARS-CoV-2 variant on 14-day risk of severe disease, defined by need for advanced respiratory support, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. Results: Severe disease or death within 14 days occurred for 950 of 3,365 (28%) unvaccinated patients and 178 of 808 (22%) patients with history of vaccination or prior COVID-19. Among unvaccinated patients, the relative risk of 14-day severe disease or death for Delta variant compared to ancestral lineages was 1.34 (95% confidence interval [CI] 1.13-1.55). Compared to Delta variant, this risk for Omicron patients was 0.78 (95% CI 0.62-0.97) and compared to ancestral lineages was 1.04 (95% CI 0.84-1.24). Among Omicron and Delta infections, patients with history of vaccination or prior COVID-19 had one-half the 14-day risk of severe disease or death (adjusted hazard ratio 0.46, IQR 0.34-0.62) but no significant outcome difference between Delta and Omicron infections. Conclusions: Although the risk of severe disease or death for unvaccinated patients with Omicron was lower than Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated patients, but there was no difference between Delta and Omicron infections.


Subject(s)
von Willebrand Disease, Type 3 , Hepatitis D , Tachypnea , Fever , Hypoxia , Death , COVID-19 , Tachycardia
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.26.22269927

ABSTRACT

BackgroundThe increase in SARS-CoV-2 infections in December 2021 in the United States was driven primarily by the Omicron variant which largely displaced the Delta over a three week span. Outcomes from infection with the Omicron remain uncertain. We evaluate whether clinical outcomes and viral loads differ between Delta and Omicron infections during the period when both variants were co-circulating. MethodsRemnant clinical specimens from patients that tested positive for SARS-CoV-2 after standard of care testing between the last week of November and the end of December 2021were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. ResultsThe Omicron variant displaced the Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N= 1121) were more likely to be vaccinated compared to patients with Delta (N = 910), but were less likely to be admitted, require ICU level care, or succumb to infection regardless of vaccination status. There was no significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. ConclusionsOmicron infections of vaccinated individuals are expected, yet admissions are less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing the Omicron transmission are required as even though the admission risk is lower, the numbers of infections continue to be high. Research in context Evidence before this studyThe unprecedented increase in COVID-19 cases in the month of December 2021, associated with the displacement of the Delta variant with the Omicron, triggered a lot of concerns. An understanding of the disease severity associated with infections with Omicron is essential as well as the virological determinants that contributed to its widespread predominance. We searched PubMed for articles published up to January 23, 2022, using the search terms ("Omicron") AND ("Disease severity") as well as ("Omicron") AND ("Viral load") And/ or ("Cell culture"). Our search yielded 3 main studies that directly assessed the omicrons clinical severity in South Africa, its infectious viral load compared to Delta, and the dynamics of viral RNA shedding. In South Africa, compared to Delta, Omicron infected patients showed a significant reduction in severe disease. In this study, Omicron and non-Omicron variants were characterized based on S gene target failure using the TaqPath COVID-19 PCR (Thermo Fisher Scientific). In the study from Switzerland that assessed the infectious viral load in Omicron versus Delta, the authors analyzed only 18 Omicron samples that were all from vaccinated individuals to show that compared to Delta, Omicron had equivalent infectious viral titers. The third study that assessed the Omicron viral dynamics showed that the peak viral RNA in Omicron infections is lower than Delta. No published studies assessed the clinical discrepancies of Omicron and Delta infected patients from the US, nor comprehensively assessed, by viral load and cell culture studies, the characteristics of both variants stratified by vaccination status. Added value of this studyTo the best of our knowledge, this is the only study to date to compare the clinical characteristics and outcomes after infection with the Omicron variant compared to Delta in the US using variants characterized by whole genome sequencing and a selective time frame when both variant co-circulated. It is also the first study to stratify the analysis based on the vaccination status and to compare fully vaccinated patients who didnt receive a booster vaccination to patients who received a booster vaccination. In addition, we provide a unique viral RNA and infectious virus load analyses to compare Delta and Omicron samples from unvaccinated, fully vaccinated, and patients with booster vaccination. Implications of all the available evidenceOmicron associated with a significant increase in infections in fully and booster vaccinated individuals but with less admissions and ICU level care. Admitted patients showed similar requirements for supplemental oxygen and ICU level care when compared to Delta admitted patients. Viral loads were similar in samples from Omicron and Delta infected patients regardless of the vaccination status. The recovery of infectious virus on cell culture was reduced in samples from patients infected with Delta who received a booster dose, but this was not the case with Omicron. The recovery of infectious virus was equivalent in Omicron infected unvaccinated, fully vaccinated, and samples from patients who received booster vaccination. FundingNIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.


Subject(s)
Infections , Hepatitis D , Severe Acute Respiratory Syndrome , COVID-19 , Disease
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.15.21262077

ABSTRACT

BackgroundThe emerging SARS-CoV-2 variant of concern (VOC) B.1.6.17.2 (Delta) quickly displaced the B.1.1.7 (Alpha) and is associated with increases in COVID-19 cases nationally. The Delta variant has been associated with greater transmissibility and higher viral RNA loads in both unvaccinated and fully vaccinated individuals. Data is lacking regarding the infectious virus load in Delta infected individuals and how that compares to individuals infected with other SARS-CoV-2 lineages. MethodsWhole genome sequencing of 2,785 clinical isolates was used to characterize the prevalence of SARS-CoV-2 lineages circulating in the National Capital Region between January and July 2021. Clinical chart reviews were performed for the Delta, Alpha, and B.1.2 (a control predominant lineage prior to both VOCs) variants to evaluate disease severity and outcome and Cycle threshold values (Cts) were compared. The presence of infectious virus was determined using Vero-TMPRSS2 cells and anti-SARS-CoV-2 IgG levels were determined from upper respiratory specimen. An analysis of infection in unvaccinated and fully vaccinated populations was performed. ResultsThe Delta variant displaced the Alpha variant to constitute 88.2% of the circulating lineages in the National Capital Region by July, 2021. The Delta variant associated with increased breakthrough infections in fully vaccinated individuals that were mostly symptomatic when compared to the Alpha breakthrough infections, though it is important to note there was a significantly longer period of time between vaccination and infection with Delta infections. The recovery of infectious virus on cell culture was significantly higher with the Delta variant compared to Alpha in both vaccinated and unvaccinated groups. The impact of vaccination on reducing the recovery of infectious virus from clinical samples was only observed with Alpha variant infections but was strongly associated with low localized SARS-CoV-2 IgG for both variants. A comparison of Ct values showed a significant decrease in the Delta compared to Alpha with no significant differences between unvaccinated and vaccinated groups. ConclusionsOur data indicate that the Delta variant is associated with increased infectious virus loads when compared to the Alpha variant and decreased upper respiratory antiviral IgG levels. Measures to reduce transmission in addition to increasing vaccinations rates have to be implemented to reduce Delta variant spread. FundingNIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.


Subject(s)
COVID-19 , Breakthrough Pain , Hepatitis D
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.05.21259105

ABSTRACT

Abstract Introduction COVID-19 large scale immunization in the US has been associated with infrequent breakthrough positive molecular testing. Whether a positive test is associated with a high viral RNA load, specific viral variant, recovery of infectious virus, or symptomatic infection is largely not known. Methods In this study, we identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021 with a time that extended from 2 to 100 days after the second dose. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Local SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort from a matched time frame. Results Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted when genomes were compared to a large control cohort from a matched time frame. A significant reduction of the recovery of infectious virus on cell culture as well as delayed time to the first appearance of cytopathic effect was accompanied by an increase in local IgG levels in respiratory samples of vaccinated individuals but upper respiratory tract IgG levels were not different between symptomatic or asymptomatic infections. Conclusions Vaccination reduces the recovery of infectious virus in breakthrough infections accompanied by an increase in upper respiratory tract local immune responses.


Subject(s)
Breakthrough Pain , COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.05.20168963

ABSTRACT

Repeat molecular testing for SARS-CoV-2 may result in scenarios including multiple positive results, positive test results after negative tests, and repeated false negative results in symptomatic individuals. Consecutively collected specimens from a retrospective cohort of COVID-19 patients at the Johns Hopkins Hospital were assessed for RNA and infectious virus shedding. Whole genome sequencing confirmed the virus genotype in patients with prolonged viral RNA shedding and droplet digital PCR (ddPCR) was used to assess the rate of false negative standard of care PCR results. Recovery of infectious virus was associated with Ct values of 18.8 {+/-} 3.4. Prolonged viral RNA shedding was associated with recovery of infectious virus in specimens collected up to 20 days after the first positive result in patients who were symptomatic at the time of specimen collection. The use of Ct values and clinical symptoms provides a more accurate assessment of the potential for infectious virus shedding.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL